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SUMMARY 
The time-dependent Navier-Stokes equations and the energy balance equation for an incompressible, 
constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method 
based on a velocity-pressure-vorticity-temperature-heat-flux (u-P-w- T-q) formulation discretized by 
backward finite differencing in time. The discretization scheme leads to the minimization of the residual in 
the 12-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are 
employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to lo6, lid-driven cavity 
flow at Reynolds numbers up to lo4 and flow over a square obstacle at Reynolds number 200, are presented 
to validate the method. 

KEY WORDS Least-squares finite element method Time-dependent Incompressible flows Boussinesq approxima- 
tion Navier-Stokes equations 

1. INTRODUCTION 

The past decade has witnessed a great deal of progress in the area of computational fluid 
dynamics. Numerous flow problems have been successfully solved by finite difference, finite 
volume and finite element methods. Most finite element methods are based on the Galerkin 
method, 9 ’ the Taylor-Galerkin method and the Petrov-Galerkin method. 3-5 Mixed-order 
interpolation and penalty approach are commonly used in these methods. It is well known that 
these methods often lead to large, sparse, unsymmetric linear systems which are difficult to solve 
numerically. This explains why finite element analysis for three-dimensional fluid flow problems 
is not a common practice. To overcome this difficulty, we propose and develop a Least-Squares 
Finite Element Method (LSFEM) for time-dependent incompressible flow problems. The linear 
systems resulting from the discretization of LSFEM are always symmetrical and positive-definite. 
Therefore, they can be solved more easily and efficiently. This is the main reason for investigating 
the least-squares finite element approach. 

Least-squares finite element methods have already been applied with some success to com- 
pressible Euler and hyperbolic equations. Jiang and Carey6- ’ and Jiang and Povinelli’ used an 
implicit method for compressible flows. To further the capabilities of the method, Lefebvre et al.’ 
applied unstructured triangular meshes to compressible flow problems. For transient advection 
problems, Donea and Quartapelle lo classified four different LSFEM approaches: characteristic 
LSFEM proposed by Li,” LSFEM by Carey and Jiang,” Taylor LSFEM by Park and 
Liggett l 3  and space-time LSFEM by Nguyen and Reynen.I4 
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For steady-state incompressible flows, an error analysis of LSFEM formulation for the Stokes 
problem was presented by Chang and Jiang’’ and Jiang and Chang.I6 Jiang” used LSFEM for 
lid-driven cavity flow at Reynolds numbers up to 10 OOO, and for flow over a backward facing step 
at Reynolds numbers up to 900. He validated his results of lid-driven cavity flow with Ghia 
et ~ l . , ’ ~  Gresho et a1.,19 Kim2’ and Sohn et ~ 1 . ~ ’  He also tested two outflow boundary conditions 
for flow over the backward facing step. Good results were obtained. Lefebvre et al.’ used 40 x 40 
quadratic triangular elements together with an incomplete Cholesky conjugate gradient algor- 
ithm for the lid-driven cavity problem. 

In this work, our objectives are twofold. First, we extend the LSFEM by Carey and JiangI2 and 
Jiang” to time-dependent incompressible flow problems. Previous LSFEM results by Jiang” 
and Jiang and Povinelli’ were obtained from a steady-state LSFEM algorithm. For high 
Reynolds number flows, time-dependent algorithms can provide interesting dynamic flow beha- 
viour. In addition, they do not require a ‘good initial guess’ or ‘zero-order’ continuation 
procedure as many steady-state algorithms do for achieving convergence. Second, we apply the 
time-dependent LSFEM algorithm to a natural convection problem. The content of the paper is 
organized as follows. In Section 2, we give a brief account of the time-dependent first -order 
velocity-pressure-vorticity-temperature-heat -flux formulation. In Section 3, we propose 
a scheme to discretize the system by minimizing the residual in the I2-norm. In Section 4, the 
performance of the time-dependent LSFEM is illustrated by three typical examples: thermally 
driven cavity flow, lid-driven cavity flow and flow over a square obstacle. The conclusions are 
finally given in Section 5. 

2. FORMULATION 

2.1. Governing equations 

Let R be a bounded domain. The spatial and temporal co-ordinates are denoted by 
x =(x, y ,  z )  E fi and t E [0,2]. We consider the time-dependent incompressible flow with thermal 
convection using the Boussinesq approximation. The governing equations in dimensionless form 
are as follows: 

V . u = O  in R, t 2 0 ,  (1) 
a U  1 
at Re 
- + u ’ v u  + v p  --v2u - 

1 
-kT=O in R, t > O ,  Fr 

aT 1 
- + u . V T - - V ~ T = O  
at P e  

in R, t > O ,  (3) 

where the velocity u=(u, u, w ) ~ ,  p is the pressure deviation from hydrostatic at the reference 
temperature, T the temperature and k the unit vector in the y direction. The domain fi = R u dR 
and the boundary of the domain dR = rl u r2. The dimensionless numbers for the thermal 
convection problems are defined as 

U 2  
y A T g D ’  

F r = -  

V 

K 
P r = - ,  
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y g D 3  A T  
Ra = 

KV 

Pe = J ( R a  Pr) ,  

where Fr is the Froude number, Pr the Prandtl number and Ra the Rayleigh number; U is the 
characteristic velocity and D the characteristic length of the domain R, v = p / p  is the kinematic 
viscosity, K the thermal diffusivity, y the volumetric thermal expansion coefficient, A T  the 
characteristic temperature difference and g the gravitational acceleration. 

2.2. First-order system 

reduced to the following first-order system in order to use simple Co-elements: 
introducing the vorticity w = V  x u and heat flux q = ( q x ,  qv ,  qz)T, Equations (1)-(3) can be 

au 1 1 
- + u * VU + Vp + - V x 0 -- k T =  0 ,  
at Re Fr 

v - u = o ,  
0 - v x u = o ,  

a T  
- + u . V T + V . q = O ,  
at 

1 
Pe 

q+-VT=O.  

Since the derivatives for velocity, pressure, vorticity, temperature and heat flux are of the same 
order, we employ the equal-order interpolation function. 

We shall only consider the problem on SZ c 93’ here: 

au au au ap 1 a. 
- + 24 - + u- + - + -- = 0 ,  
at ax ay  ax  R e a y  

a0 a U  au a p  1 do 1 
at ax ay ay R e a x  Fr ’ 

- + - = 0 ,  

w+----=o 

-+u-+u-+ - _ _ _ _ _  T=O 

a u  au 
ax ay  
a u  aU 
ay  ax 

ZT aT aT  aqx aq 
- + u - + u - + - + - - l l = o ,  
at ax ay ax  ay 

1 aT 
Pe ax 

qx+- - =o, 

1 o7T 
Pe dy  

qy +- - = 0 .  

(9) 
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Equations (9H15) form a non-linear initial boundary value problem and can be expressed as 

dV a v  a v  
at ax dY 

A o - + A ~ ( v ) - + A ~ ( v ) - - + A 3 v = O  in 0, t > O ,  

B . v = g  on 80, t 2 0 ,  (17) 

v = v o  in 0, t = O ,  (18) 

where v=(u, u, p ,  w, T, q x ,  qr)T, g and vo are the given values and the coefficient matrices are 
given by 

A0 = 

A' = 

1 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 1 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

1: 0 0 1/Re 0 
O u l  0 0 
0 1 0  0 0 
1 0 0  0 0 
0 0 0  0 V 

0 0 0  0 0 

0 0  
0 0  
0 0  
0 0  
0 1  
0 0  

0 0 0 0 1/Pe 0 0 

u o 1  
o u o  
1 0 0  

A , =  0 - 1  0 
0 0 0  
0 0 0  1 0 0 0  

3 A , =  

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 1  
0 0 0 0  
0 0 0 0  
0 0 0 0  

There are two constraints for the incompressible flow: 

Constraint 1. The initial velocity value (uo ,  u o )  is subject to 

0 0 0 0  
1/Re 0 0 0 
0 0 0 0  
0 0 0 0  
0 u 1 0  

0 0 0 0  
0 1/Pe 0 0 

0 0 0  
-1fFr 0 0 

0 0 0  
0 0 0  
0 0 0  
0 1 0  
0 0 1  

Constraint 2. The initial value vo and the boundary value g are subject to, along the boundary, 

n * ( B  - vo) =n * g in an. (22) 
If either equation (21) or (22) is violated, the Navier-Stokes problem is ill-posed and has no 
solution." 

In the formulation of other finite element weak solutions, integration by parts generates 
additional boundary terms, whereas LSFEM does not use integration by parts in the formula- 
tion. Therefore, no additional boundary integration term results. Since the system is of first order, 
only Dirichlet -type boundary conditions are specified in LSFEM. If stress boundary conditions 
are specified, we can use shear stresses instead of vorticity to formulate the first-order system of 
equations, thus leading to Dirichlet-type boundary conditions. In the context of LSFEM, Jiang" 
had discussed different boundary conditions for a variety of fluid flows. 

The discretization of equation (16) by backward finite difference in time leads to the implicit 
problem with the first-order accuracy O(At ) ,  

(vn+ 1 -vn) d v n +  1 a v n +  1 
+ A ; -  + A ! + -  + A3V"+ -0 - (23) 

At ax aY 
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or 
)IV"+ 1 - -f", 

where time step At=t"+'-t", and n denotes the nth time level. L is a first-order partial 
differential operator, defined by 

and the right-hand-side vector 

It should be noted that equation (23) is linearized by setting A: =A,(v")  and A!= A,(v") at the 
previous time level. 

3. LEAST-SQUARES DISCRETIZATION 

To develop time-dependent LSFEM systems, we define the least-squares functional of the 
residual R =  L V " + ~ - - ~ "  in equation (23) for admissible v"" as 

J(v"+')= RT'Rdxdy .  (26) I* 
Minimization of the functional leads to 

dJ(V"+ 1 )  = 0 ,  

i.e. 

[L(dvn")lT * [ Lv"'~ - f "1 dx dy = 0 .  

Setting d ~ " + ~ = w ,  equation (27) can be rewritten as 

(Lw, LV"+l)=(Lw, f"). 

Let us discretize the domain R by a union of finite elements Re as R =  u:z  Re and introduce 
the equal-order interpolation function Qi(x, y). The approximation solution is defined as 

v;: + ' (x, y, t )  = 5 
i =  1 
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where N ,  is the number of nodes for an element. Substituting equations (29) and (30) into (28), we 
hav,e the quasi-linear algebraic equations 

(31) Kn.Un+l -  - F " ,  

where 
N. 

K"=(L@i,  L @ j ) =  C ( L @ i ) T ( L @ j )  dxdy.  (32) 
e =  1 s,. 

The global matrix K", vector U"+l  and right-hand-side vector F" are assembled by the following 
element matrices and vectors: 

r 

(Kf j ) '=  ( L@i)T (L@j) dx dy , J,. 

( U ; + l ) e  

(33) 

(34) 

and 

where u", u" and T" are calculated at the nth time level. 
An important feature of the LSFEM can be observed from equation (33) that coefficient matrix 

K" is symmetric and positive-definite. Therefore, only the lower half band of the matrix is 
generated by reduced integrationz3 and stored for the Cholesky factorization. Like Jiang's results 
for the steady-state incompressible flows, l7 our unsteady-state solutions also reveal that pres- 
sure, vorticity and heat flux have some oscillations at nodal points but the solutions at Gaussian 
points are very smooth. We test two smoothing techniques: one is a simple average method at 
Gaussian point (xG, yG), 

PG 
0 G  

4 x  G 

q Y G  
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and the other is called element area weighting, described by Sani et aLZ4 Both smoothing 
techniques work very well. But for LSFEM, the above smoothing technique is simple to use. 

4. RESULTS AND DISCUSSIONS 

In testing our time-dependent LSFEM algorithm with these 'classic' examples, we use the 
following criterion to obtain steady-state solutions: 

where i denotes the ith node and N ,  is the total number of unknowns. The tolerance E is chosen as 
for the thermally driven cavity flow and as lop4 for the lid-driven cavity flow and the flow 

over a square obstacle. It is assumed that the numerical solutions approach the steady state when 
the criterion is satisfied. The method used to solve the time-dependent matrix system is similar to 
that for solving steady-state problems by the successive substitution without under-relaxation. 
Since the backward differencing method is unconditionally stable, a large time step At 20.5 can 
be applied in all examples. The dependent variables do not have significant changes as the 
flow approaches steady-state condition; therefore, we can use large At in the latter part of the 
simulations. In addition to equation (37), we have also used another stopping criterion, 
IIU"+l- Unl12/((Un+111z< where IIU"+1112 is the [?-norm of the vector in (31). All simula- 
tions stop at time levels close to each other. In equation (23), we used backward difference in time, 
but other schemes may be used. In fact, we have used the Crank-Nicolson scheme with LSFEM 
for transport of pollutants. 

4.1. Thernially driven cavity flow 

The laminar incompressible flow in a square cavity with insulated top and bottom walls but 
differentially heated vertical walls has served as the model problem for testing and evaluating 
numerical techniques for natural convection. We use a non-uniform mesh of 50 x 50 elements 
(2601 nodal points, 17 602 degrees of freedom for the thermally driven flow) as shown in Figure 1. 
The smallest element size is h = 0002 at  the four corners. The boundary conditions are: u = v = 0 
everywhere; the top and bottom walls are insulated, qy=O the two vertical walls are kept at the 
uniform temperature, left wall T= 1 and right wall T= 0 the reference pressure p = O  is specified at 
the lower left corner. No vorticity w and heat flux in the x direction qx are specified. The initial 
condition is taken as v(x, y ,  O ) = O  in the domain R. The numerical solutions are obtained for the 
following dimensionless numbers: F r =  1, Pr=0.71 and Ra= lo3, lo4, lo5, 10'. The numerical 
results are given in Figures 2-4 for contours of temperature and stream function and for velocity 
vectors. All contour plots compare well with the bench-mark solutions of De Vahl Davis.25 

The maximum values of velocities u and v and the Nusselt number at the hot wall obtained 
from the present work are compared with other results reported in the l i t e r a t~ re , ' ~ -~ '  as shown 
in Table I, where N u o ,  Nu,,, and Numi, are the average Nusselt number, maximum and 
minimum values of the local Nusselt number at the hot wall (x = 0), respectively. 

It is worth mentioning that Davis25 used a streamfunction-vorticity finite difference method 
with 41 x 41 grids for Ra= lo3 and Ra= lo4, and 81 x 81 grids for Ra= lo5 and Ra= 10'. He also 
used Richardson extrapolation to obtain the bench-mark solutions. Hortmann et ~ 1 . ~ ~  used 
a finite volume multigrid procedure with 160 x 160 grids for Ra = lo4 and up to 640 x 640 grids 
for Ra= lo6. Ramaswamy et a/.27 used a semi-implicit finite element method (a projection 
scheme including an explicit step for advection terms, fully implicit step for diffusion terms and 
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Figure 1 .  Finite element mesh for thermally driven cavity flow and lid-driven cavity Row (50 x 50 bilinear elements) 

a pressure correction step via the solution of the Poisson equation) with 25 x25  biquad- 
ratic/bilinear elements for velocity and pressure. In the light of these facts and the results in 
Table I, our LSFEM results from 50 x 50 bilinear elements are quite satisfactory. 

4.2. Lid-driven cavity Jlow 

The fluid in the cavity is driven by the moving top at an uniform velocity. Since the flow is 
isothermal, the buoyancy term in equation (10) is neglected, and only equations (9)-(12) are 
solved. For moderately high Reynolds numbers, Ghia et a/.’* used a coupled strongly implicit 
multigrid method (CSI-GM) to obtain a series of detailed steady-state results with very fine but 
uniform meshes (129 x 129 nodal points for Re< 3200 and 257 x 257 points for R e 2  5000). 
Burneau and J ~ u r o n ~ ~  also solved this problem for Reynolds numbers as high as 15 OOO by means 
of a multigrid method with a very fine mesh on staggered grids. Finite element solutions by 
Gresho et using a modified finite element method, and by Jiang,” using LSFEM, were 
obtained on grid systems of 50 x 50 non-uniform bilinear elements for Reynolds numbers up to 
10000. More recently, Ramaswamy et U / . , ~ ’ , ~ O  using a semi-implicit finite element method with 
biquadraticlbilinear elements on 41 x 41 and 65 x 65 non-uniform meshes, presented results for 
flows up to Re = 10 000. 

The boundary conditions are only specified as u = v= 0 everywhere except on the top lid, where 
u = 1 and u = 0. The reference pressure p = 0 is specified at the lower left corner. We do not have to 
specify vorticity at  the cavity wall because Jiang’s steady-state results l7 revealed that it was 
unnecessary to specify vorticity when velocities were specified at the cavity wall. The initial 
condition is taken as v(x, y, O ) = O  in the domain R .  

The numerical results of velocity vector, stream function, pressure contours and vorticity 
contours for Re=5000, 10000 are shown in Figures 5 and 6, respectively. The stream function, 
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Figure 2. Temperature contours ol thermally driven cavity flows at different Rayleigh numbers 

vorticity and pressure compare well with those by Ghia et ~ l . , ' ~  Gresho et ul.I9 and Jiang.I7 As 
shown in Figure 7, our results for Re= 10000 at the bottom right corner of the cavity compare 
well with the fine mesh (257 x 257) results of Ghia et a1.'* Figure 8 shows that the velocity profiles 
along the central axes of the cavity compare well with those of Ghia et a1." To achieve 'the steady 
state', 120 time steps for Re = 5000 and 160 time steps for Re = 10 000 are required, with the time 
step At being 0.5. 

4.3. Flow over a square obstacle 

Whereas the last two examples have often been used to provide bench-mark steady-state 
solutions to test different numerical algorithms, accurate transient results are scarce in the 
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Figure 3. Stream function contours of thermally driven cavity flows at different Rayleigh numbers 

literature. For this example, we use LSFEM to simulate the laminar flow over a square obstacle. 
Using the standard Galerkin finite element method, Leone and Gresho3’ obtained accurate 
steady-state results, whereas Lava1 and Quartapelle3’ provided limited transient solutions from 
a Taylor-Galerkin finite element method. 

The geometry of the flow domain and the finite element mesh (totally 950 elements) are given in 
Figure 9. We consider the problem at Re=200. The boundary conditions are set as: at  the inlet 
a constant uniform velocity u = 1 and u = 0 are imposed; along the wall and along the obstacle 
no-slip conditions u = v = O  are used. At the outflow boundary, the use of traction-free boundary 
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Figure 4. Velocity vectors of thermally driven cavity flows at different Rayleigh numbers 

conditions (zero normal and tangential stress) is a common practice (see Reference 31). Since the 
flow becomes fully developed and unidirectional at the outlet, zero normal stress implics the 
specification of p = 0. and zero tangential stress (au/c?y = 0) implies that the vorticity is also equal 
to zero. Therefore, it is reasonable to set vorticity w=O and pressure p = O  as the outllow 
boundary condition. 

The numerical results for the stream function at t = 1, 2, 5 and 47 are shown in Figure 10. When 
t=47 (94 time steps), the solution satisfies criterion (37) and is supposed to achieve the stcady- 
state condition. The noteworthy features of the simulation are the presence of velocity vector 
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Figure 5. Numerical results of the lid-driven cavity flow for Re=5000 ( t  =60) 

wiggles at the inlet and outlet when a coarse mesh is used. An explanation of the cause of wiggles 
is given by Leone and G r e ~ h o . ~ '  The vector wiggles can be reduced by using the fine mesh near 
the corners of the square obstacle as shown in Figure 9. Although LSFEM has 'inherent' 
numerical diffusion, it does not totally remove wiggles as some upwinding schemes do. Neverthe- 
less, the presence of wiggles signifies the need of local refinement of the mesh system. The velocity 
vectors at different times are given in Figure 11. The pressure and vorticity contours at t=47  are 
shown in Figure 12. Our results at  t=47 compare well with the steady-state result of Leone and 
Gresho, whereas our transient results (Figure 10) compare well qualitatively with the results of 
Lava1 and Q ~ a r t a p e l l e . ~ ~  



TIME-DEPENDENT INCOMPRESSIBLE FLOWS 283 

Table I. Comparison of numerical results 

Ra Source urnax urnax Nu, Nu,,, Nu,,, 

Ramaswamy et aLZ7 -. - ~ - - 

~ Hortmann et al.” - - - ._. 

103 De Vahl Davis2’ 3.65 3.70 1.12 1.51 0.69 
Present method 3.66 3.68 1.12 1.51 0.69 

Ramaswamy et aL2’ 19.62 ~ - - 

Hortmann et ~ 1 . ~ ’  16.18 19.62 - 3.53 - 

104 De Vahl Davis2’ 16.18 19.62 2.24 3.52 0.59 
Present method 16.24 19.62 2.25 3.53 0.59 

Hortmann et 34.74 68.62 ~ 7.72 - 

105 De Vahl Davisz5 34.73 68.59 4.5 1 7.72 0.73 
Present method 35.15 68.39 4.52 7.70 0.73 

Ramaswamy et id2’ 232.97 - 

Hortmann et aL2’ 64.83 22047 - 17.54 - 

106 De Vahl Davis25 64.63 219.36 8.82 17.93 0.99 
Present method 65.28 222.09 8.85 17.63 0.95 

~ 

~ Ramaswamy et al.” 68.62 __ - - 

~ - - 
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Figure 6. Numerical results of the lid-driven cavity flow for Re= loo00 ( t  =80) 
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Figure 7. Stream function contours at the lower right corner for Re=10000 
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Figure 8. Comparison of velocity profiles through the centre of the cavity 
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Figure 9. The geometry and finite element mesh for a flow over an obstacle 
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Figure 10. Stream function distribution for flow over an obstacle at Re=200 
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Figure 11. Velocity profile for flow over an obstacle at Re=200 

For this problem, the CPU times per time step are 4.5 and 104 s, respectively, for using NAG 
and LINPACK subroutines on a single processor of an IBM 3090-6005 computer. The CPU time 
per time step for the Galerkin finite element method using NAG subroutines is 2.3 s. Since our 
objective in this work is to test the LSFEM for time-dependent problems, we used the Cholesky 
decomposition technique to solve the symmetric positive-definite linear systems. In practice, and 
for large-scale problems, iterative techniques such as preconditioned conjugate gradient methods 
should be used. For example, Jiang et a1.33 have used a matrix-free Jacobi conjugate gradient 
method for three-dimensional problems. 
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5. CONCLUSIONS 

A least -squares finite element method has been presented for time-dependent incompressible 
Navier-Stokes equations and the thermally driven cavity flow problem. The results have 
demonstrated that the method is reliable, accurate and stable for large time steps. Since the 
LSFEM provides a Symmetric and Positive- Definite (SPD) matrix system, it has a great deal of 
potential for time-dependent three-dimensional flow problems. Our preliminary results on the 
flow over an obstacle also showed that the LSFEM provided accurate numerical solutions for an 
unbounded physical domain. However, it is obvious that much work remains to be done if 
LSFEM is to be routinely used for simulating time-dependent three-dimensional flows. 
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